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plementation of the spectral optimization algorithm (SOA) for Case 2 waters for
processing of ocean color data. This algorithm uses aerosol models and a bio-optical reflectance model to
provide the top-of atmosphere (TOA) reflectance. The parameters of both models are then determined by
fitting the modeled TOA reflectance to that observed from space, using non-linear optimization. The
algorithm will be incorporated into the SeaDAS software package as an optional processing switch of the
Multi-Sensor Level-1 to Level-2 code. To provide potential users with an understanding of the accuracy and
limitations of the algorithm, we generated a synthetic data set and tested the performance of the SOA with
both correct and incorrect bio-optical model parameters. Application of the SOA to actual SeaWiFS data in the
Lower Chesapeake Bay (for which surface measurements were available) showed that 20% errors in the bio-
optical model parameters still enabled retrieval of chlorophyll a and the total absorption coefficient of
dissolved plus particulate detrital material at 443 nm with an error of less than 30% and 20%, respectively. In
a companion paper we present a validation study of the application of the algorithm in the Chesapeake Bay.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Since the Coastal Zone Color Scanner (CZCS) proof-of-concept ocean
color mission (Gordon et al., 1980; Hovis et al., 1980; Gordon & Morel,
1983), space borne monitoring of the concentration of phytoplankton
pigments, particularly chlorophyll a, has become well established. Two
sensors, the Sea-viewing Wide Field of View Sensor (SeaWiFS) and
Moderate Resolution Imaging Spectroradiometer (MODIS) were
launched in 1997 and 1999, respectively, and a second MODIS in 2002.
They represent considerable improvements in radiometric sensitivity
over CZCS (Hooker et al., 1992; Salomonson et al., 1989). This
necessitated the need for more sophisticated algorithms both for
atmospheric correction, to retrieve the water leaving reflectance ρw
from the total reflectance ρt measured at the top of the atmosphere, and
for bio-optical retrieval, relating ρw to the chlorophyll concentration.
Here, we focus on SeaWiFS, which has 6 spectral bands in the visible
(VIS, bands 1–6: 412, 443, 490, 510, 555, and 670 nm) and 2 bands in the
near infrared (NIR, bands 7 and8: 765and 865nm); however, the results
should be applicable to any sensor with a similar band set.

The SeaWiFS data analysis system (SeaDAS: oceancolor.gsfc.nasa.
gov/seadas/) provides the framework for both atmospheric correction
and bio-optical retrievals from ρt using both SeaWiFS and MODIS. At
rdon).

l rights reserved.
present, only one standard atmospheric correction is available (Gordon
& Wang, 1994; Gordon, 1997). The algorithm compares the spectral
variation of the aerosol reflectanceρA in thenear infrared (NIR)with that
of several candidate aerosol physical–chemical bimodal models (Shettle
& Fenn,1979). Themost appropriate models are then used in estimating
the aerosol contribution in the visible spectrum. This technique appears
to work well if the aerosol is non-absorbing (Bailey & Werdell, 2006),
however the NIR measurements alone make it impossible to infer
information about aerosol absorption (Gordon, 1997). For this task it
becomes necessary to include information at visible wavelengths in the
correction process. The difficulty then becomes retrieval of the water
leaving reflectance ρw at the same wavelengths, whose estimate is
dependent on the absorption and scattering properties of the unknown
water constituents. Essentially the task requires a coupled model for
simultaneous characterization of ρA and ρw. Two examples of such a
method are the spectral matching algorithm (Gordon et al., 1997) and
the spectral optimization algorithm SOA (Chomko & Gordon, 1998;
Chomko & Gordon, 2001). The latter model will be the focus of
discussion in this study. It assumes a simple one-parameter model for
the aerosol size distribution. A set of refractive indices that represents a
range of absorption properties is then used in conjunction with Mie
theory to yield the aerosol optical properties. These aerosol models are
then combined with a bio-optical model to estimate the aerosol and
water properties through non-linear optimization.

The two mentioned SOA studies use the semi-analytic bio-optical
model of Gordon et al. (1988) for retrieval of chlorophyll information

mailto:gordon@physics.miami.edu
http://dx.doi.org/10.1016/j.rse.2008.11.001
http://www.sciencedirect.com/science/journal/00344257


s v r i

572 C.P. Kuchinke et al. / Remote Sensing of Environment 113 (2009) 571–587
assisted by a marine particulate scattering factor b0. A more recent
bio-optical model by Garver and Siegel (1997), denoted GSM after its
optimized tuning by Maritorena et al. (2002), retrieves chlorophyll
information, particulate backscatter bbp and the absorption by colored
detrital material (CDM, the sum of dissolved organic matter and
detrital particles). The SOA coupled with a Case 1 version of GSM was
first developed by Chomko et al. (2003). It performed well retrieving
the chlorophyll a concentration and the absorption of detrital material
in Case 1 waters when the aerosol was non- or weakly-absorbing;
however, in this situation it performed no better than the Gordon and
Wang atmospheric correction algorithm combined with GSM. The
attraction of the SOA is its potential to provide adequate retrievals
when the aerosol is more strongly absorbing.

This study presents a new version of the SOA to be incorporated into
the SeaDAS software package, as an optional processing switch of the
Multi-Sensor Level-1 to Level-2 code (Franz et al., 2005). It contains an
updated non-linear spectral optimization and is modified to operate in
Case 2 waters as defined in Gordon and Morel (1983). From an ocean
color perspective, Case 2waters are challenging for several reasons. First,
theyoften contain concentrations of particulates (organic and inorganic)
that are sufficiently high to produce significant water reflectance in
the NIR. Thus, the basic assumption in the Gordon and Wang (1994)
atmospheric correction algorithm, i.e., that the reflectance in the NIR is
negligible, is violated. Second, admitting that many Case 2 waters are in
coastal areas, the aerosol over suchwaters ismore likely to be absorbing
due to the proximity to land and anthropogenic sources of pollution. The
effect on the reflectance at the top of the atmosphere by the associated
absorption by such aerosols in the blue must be separated from the
effect of the phytoplankton pigments and the detrital material in the
water. For these reasons, we concentrate here on Case 2 waters.

The SOA as presented earlier (Chomko et al., 2003) is modified to
handle situations in which NIR reflectivity is non-negligible in an
iterativemanner. A complete summary of themodel is presented here,
including a detailed description of the interpolation framework used
for determination of all parameters and the modifications required for
Case 2 waters. The SOA is then tested using a simulated Case 2 data set
to quantify its performance.

For this task two sets of GSM model parameters are examined
using information from the Lower Chesapeake Bay (CBL) and the
Middle Atlantic Bight (MAB). The performance of the model in each
Case 2 region is determined to provide an understanding of the
strengths and limitations of the algorithm.

Understanding that Case 2waters are sufficiently diverse and complex
that a “universal” set of Case 2 bio-optical model parameters simply does
not exist, and site-specific, and likely time-specific, bio-optical parameters
will be required, an analysis of the impact of error in the GSM model
parameters (i.e., error in the assumed bio-optical model parameters) on
SOAperformance is alsopresentedusingsyntheticdata inCBLandMAB, as
well as SeaWiFS data in CBL. The overall goal is to provide examples of the
error thatmight be expected in an actual application of the algorithm, so a
user might judge the likely quality of a given retrieval. In a companion
paper, we provide a case study of the application and performance of the
modified SOA in the Chesapeake Bay through comparisons with
contemporaneous in situ data (Kuchinke et al., 2009).

2. Radiative properties of the model

2.1. Radiative transfer

Throughout we use the reflectance ρ in place of the radiance L. The
reflectance is defined by ρ=πL /F0cosθs, where F0 is the extraterrestrial
solar irradiance and θs is the solar zenith angle. After removing sun-glint
contaminated pixels and correcting for whitecap reflectance using the
standard SeaDAS algorithms, we obtain the total top-of-atmosphere
(TOA) reflectance of the ocean-atmosphere system ρt(λ) at visible and
NIR wavelengths λ. This quantity includes the molecular Rayleigh
scattering contribution ρr(λ), the aerosol contribution in the presence of
Rayleigh scattering ρA(λ), and the TOA water-leaving reflectance tv(λ)ts
(λ)ρw(λ); i.e.,

ρt λð Þ = ρr λð Þ + ρA λð Þ + tv λð Þts λð Þρw λð Þ; ð1Þ

where ts(λ) and tv(λ) are the atmospheric diffuse transmittances from
the sun to the sea surface and sensor to the sea surface, respectively.
The atmospheric contribution ρr(λ)+ρA(λ) includes light scattered in
the atmosphere and specularly reflected from the sea surface, as well
as sunlight directly backscattered from the atmosphere alone. Since ρr
(λ) can be computed precisely given the surface atmospheric pressure
and wind speed, it can be subtracted from ρt(λ) to form

ρAw θs; θv;/;λ;measuredð ÞuρA θs; θv;/;λð Þ
+ tv θs; θv;/;λð Þts θs; θv;/;λð Þρw λð Þ

ð2Þ

where θs, θv and ϕ represent the solar and viewing zenith angles and
relative azimuth angles respectively. The final result also includes an
aerosol and Rayleigh correction for oxygen absorption in SeaWiFS
band 7 (Ding & Gordon, 1995).

2.2. The aerosol models

Aerosol particles are distributed according to a Junge power-law
size distribution (Chomko & Gordon, 1998):

dN
dD

= 0; D bD0;

dN
dD

=
K

Dm + 1
1

; D0 VD VD1;

dN
dD

=
K

Dm + 1 ; D1 VD VD2;

dN
dD

= 0; D ND2;

ð3Þ

whereD anddNare theparticle diameter andnumberof particles per unit
volume in the size intervalD±dD/2, andD0,D1 andD2 are 0.06, 0.20 and
20µmrespectively. This size distributionhas beenused often to represent
aerosols, although many recent studies show that it is an oversimplifica-
tion (see Kaufman et al.,1997 and papers therein).We use it here because
withD0,D1, andD2 fixed, the size distribution depends continuously on a
single parameter: ν. This oversimplified parameterization is required due
to the small number of spectral bands available for the optimization.

A singlewavelength-independent complex indexof refractionm=mr−
imi is assigned to the entire distribution to compute the radiative optical
properties fromMie theory, i.e., the aerosol phase function, aerosol optical
depth τ(λ), and aerosol single-scattering albedo ω0(λ). A two-layer
radiative transfer (RT) program was used to compute the reflectance for
the atmosphere-sea surface systemprovidingρr(λ)+ρA(λ), as a function of
the aerosol optical depth at 865 nm, τ(865). In the case of strongly
absorbing aerosols,ρr(λ)+ρA(λ) depends strongly on the altitude towhich
the aerosol is mixed. In these computations the aerosol was uniformly
mixedwith air from the surface up to 2 km. The choice of mixing to 2 km
was again a compromise to reduce the number of parameters to allow
optimization. In the RT computations, the atmosphere was bounded by a
flat Fresnel reflecting ocean that absorbed all photons penetrating the
surface. Computing ρt(λ)−ρr(λ) produced ρA(λ) as a function of τ(λ), with
λ centered at the respective wavelength of the SeaWiFS bands. This final
result was least-squares fit to a quartic expression for τ(λ)=0 to 1.2 over a
wide range of solar and viewing geometries.

ρA θs; θv;/;λ;mr;mi; mð Þ = a θs; θv;/;λ;mr;mi; mð Þτ λð Þ
+ b θs; θv;/;λ;mr;mi; mð Þτ2 λð Þ
+ c θs; θv;/;λ;mr;mi; mð Þτ3 λð Þ
+ d θ ; θ ;/;λ;m ;m ; mð Þτ4 λð Þ

ð4Þ
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where a, b, c, d are fitted constants for a given geometry. Wemention in
passing detail that a, b, c, d are actually computed from their Fourier
transformed (in the angle ϕ) counterparts to reduce the size of the final
look-up tables (LUTs). This is the same technique that is used in the LUTs
stored for the standard Gordon and Wang (1994) algorithm.

The information on aerosols is stored in the form of 72 LUTs for
access by the SOA. The complex index of refraction is indexed into two
values of mr (1.33, 1.5) and six values of mi (0, 0.001, 0.002, 0.004,
0.007, 0.010). More values of mi are used than mr in an attempt to
include as much of the variation in absorbing properties of the aerosol
as possible within a limited range of models. The Junge aerosol size
distribution parameter ν ranges from 2.0 to 4.5 in steps of 0.5. Each of
the models in the LUTs therefore contains RT information calculated
for the specific combination of mi, mr and ν, namely the extinction
coefficient k(λ) (for an arbitrary K), the single scattering albedo ω0(λ),
and the a, b, c, d (Fourier analyzed) coefficients relating ρA(λ) and
τ(λ) for a large set of viewing and solar directions. For the diffuse
transmittancewe use the same assumption as the standard algorithm,
i.e., that the upwelling radiance beneath the water surface is uniform,
such that tv(θs,θν,ϕ,λ)→ t⁎(θv,λ) and ts(θs,θν,ϕ,λ)→ t⁎(θs,λ), where

t4 θ;λð Þ = A θ;λð Þ exp −B θ;λð Þτ λð Þ½ �; ð5Þ

and θ is either the viewing or the solar zenith angle. The computed
diffuse transmittance coefficients A(θ,λ) and B(θ,λ) (Yang & Gordon,
1997) are also stored in the same look-up tables (for each model). As
discussed later, SOA interpolates across values of mi, mr and ν to
essentially give a continuum of models.

2.3. The ocean bio-optical models

The water-leaving reflectance (ρw) is provided as a function of the
total absorption (a) and backscattering (bb) coefficients (Gordon et al.,
1988). The spectral absorption andbackscattering coefficients are further
separated into the constituent components plus that of pure sea water:

a λð Þ = aw λð Þ + aph λð Þ + aCDM λð Þ
aCDM λð Þ = aCDOM λð Þ + adp λð Þ

bb λð Þ = bbw λð Þ + bbp λð Þ
ð6Þ

where the subscripts ‘w’, ‘ph’, ‘CDM’, ‘CDOM’,‘dp’ and ‘p’ refer towater,
phytoplankton, colored detrital material, colored dissolved organic
matter, detrital particles, and all particles, respectively. Values of aw(λ)
and bbw(λ) are known constants (Morel, 1974; Pope & Fry, 1997). The
absorption due to detrital particles and colored dissolved organic
matter, are combined (into CMD) due to their similar spectral
signature. In the GSM model (Garver & Siegel, 1997; Maritorena
et al., 2002) all of the optical properties are modeled by three
parameters: (1) the absorption coefficient of colored detrital material
at 443 nm (aCDM(443)); (2) the chlorophyll a concentration C, and (3)
the backscattering coefficient of particulate material at 443 nm (bbp
(443)). Specifically,

aph λð Þ = Ca4ph λð Þ;
aCDM λð Þ = aCDM 443ð Þ exp −SCDM λ−443ð Þð Þ
bbp λð Þ = bbp 443ð Þ 443=λð Þη;

ð7Þ

where a⁎ph(λ) is the chlorophyll a specific absorption coefficient
spectrum for phytoplankton, SCDM is the CDM spectral shape
parameter and η parameterizes the spectral variation of the
particulate backscattering. Given the quantities a⁎ph, SCDM and η, the
GSM water reflectance model can be represented as

ρVw λð Þ = ρVw λ;C; aCDM 443ð Þ; bbp 443ð Þ� �
; ð8Þ
where ρ′w(λ) is assumed to be independent of sun or viewing
geometry (as in the computation of t⁎). Henceforth, a primed symbol
indicates a quantity is modeled, as in Eq. (8).

3. Spectral optimization algorithm implementation

We solve for the TOA reflectance by constructing a set of non-linear
equations across the eight SeaWiFS bands, and then performing spectral
optimization to solve for the seven unknowns C, aCDM(443), bbp(443),mr,
mi, ν and τ(865) Eq. (9). Note that because mr, mi, ν and τ(865) specify
the aerosol optical depth at all wavelengths, this set specifies ρ′A at all
wavelengths. This forms the modeled counterpart of the expression in
Eq. (2).

ρVAw θs; θv;/;λi;mr;mi; m; τ 865ð Þ;C; aCDM 443ð Þ; bbp 443ð Þ� �
uρVA θs; θv;/;λi;mr;mi; m; τ 865ð Þð Þ + tVv θv;λi;mr;mi; m; τ 865ð Þð Þ
×tVs θs;λi;mr;mi; m; τ 865ð Þð Þ×ρVw λ;C; aCDM 443ð Þ; bbp 443ð Þ� �

:

ð9Þ

The estimation of parameters in Eq. (9) is undertaken as two
interdependent steps. First, ρAw(765) and ρAw(865) and the informa-
tion contained in the aerosol LUTs are used to provide a constraint on
the aerosol models. Then spectral optimization is performed to find all
the parameters using standard non-linear bounded constrained
optimization techniques.

3.1. Selection of aerosol models appropriate to NIR reflectance

Chomko and Gordon (1998, 2001), selected an aerosol model (a
particular set of the quantities ν, mr, and mi) based on ρA at the two
NIR bands. Later, Chomko et al. (2003) used a more sensitive approach
that involves finding the values of ν and τ(865) that exactly reproduce
ρA(λ) at both NIR wavelengths (assuming ρw=0) for each combination
of mr and mi. We call these ν (mr,mi) and τ(865,mr,mi). These are then
used to constrain the final optimization. The details of the procedures
are provided next.

We simplify notation by using the term NIR where operations are
undertaken at both 765 and 865 nmwavelengths. The functions ν (mr,
mi) and τ(865,mr,mi) are estimated at each of the 12 grid points (mr,mi)
defined in Section 2.2. For this task we find an exact fit between ρAw
(NIR) and ρ′Aw(NIR), i.e., we solve two equations for two unknowns: ν
and τ. This is done through non-linear inversion by minimizing

fNIR = ∑
λNIR

ρVAw θs; θv;/;λNIR;mr;mið Þ−ρAw θs; θv;/;λNIR;measuredð Þf g2:

ð10Þ

Note that in general ρAw(NIR) depends on the water properties as
well as the aerosols (this is particularly important in Case 2 waters). As
this dependence is unknown a priori, the procedure is started assuming
ρ′w(NIR)=0. The order of events beginswith selection of a set of starting
candidates νtest(mr,mi) and τtest(865,mr,mi). Using the LUT's, the
quantities τ(λ,mr,mi), t⁎(λ,mr,mi) and ρ′A(λ,mr,mi) are then interpolated
as a function of the candidate value νtest(mr,mi) (see Appendix). Finally,
theminimization and interpolations are operated iteratively to find νopt

(mr,mi) and τopt(865,mr,mi,νopt). At the completion of this procedure,νopt

(mr,mi) and τopt(865,mr,mi,νopt), when coupled with mr, and mi, exactly
(or within the accuracy of the optimization) reproduce ρAw(NIR), i.e., ρ′A
(NIR,mr,mi).

In Case 2 waters, t⁎(NIR,mr,mi,νopt,τopt) and information on ρ′w
(NIR) are included in the minimization. An estimate of ρ′w(NIR) is
obtained after estimation of the bio-optical properties using Eq. ((8).
This part is explained further in Section 3.3. We note that the quantity
ρ′A(NIR,mr,mi,νtest,τtest) is center-band while ρAw(NIR) is full-band. At
thesewavelengths the influence ofwater-vapor and oxygen absorption
over the broad spectral bands is significant. We therefore convert ρAw
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(NIR) from full-band to center-band at each iteration of theminimization
using the procedure developed by Gordon (1995).

3.2. Retrieval of all parameters

The spectral optimization algorithm uses the six visible (VIS)
SeaWiFS bands to estimate five parameters C, aCDM(443), bbp(443), mr

and mi. Thus, given the functions νopt(mr,mi) and τopt(865,mr,mi,νopt)
obtained earlier, minimization of the following function is undertaken

fVIS mr;mi;C; aCDM λ443ð Þ; bbp λ443ð Þ� �

u ∑
λVIS

ρVAw θs; θv;/;λVIS;mr;mi;C; aCDM λ443ð Þ; bbp λ443ð Þ� �
−ρAw θs; θv;/;λVIS;measuredð Þ

� �2

ð11Þ

using the Broyden Fletcher Garbo Shannon (BFGS) non-linear optimiza-
tion algorithm (Byrd et al., 1995). At each step the iterates from the
previous search are used with the Quasi Newton condition. Themethod
has been developed for large scale problems (L) with simple bounds on
the variables (B), or L-BFGS-B (Zhu et al., 1997). The SOA now uses
Version 2 of Byrd et al. (1995). It is implemented on fVIS(mr, mi, C, aCDM
(λ443),bbp(λ443)) with the following inequalities:

mi minð Þ Vmi Vmi maxð Þ;
mr minð Þ Vmr Vmr maxð Þ;
C minð Þ V C V C maxð Þ;

aCDM minð Þ V aCDM V aCDM maxð Þ;
bbp minð Þ V bbp V bbp maxð Þ:

ð12Þ

where mi(min)=0, mi(max)=0.04, mr(min)=1.33, mr(max)=1.50, C
(min)=0.02 mg m−3, C(max)=60.0 mg m−3, aCDM(min)=0.001 m−1,
aCDM(max)=1.2m−1, bbp(min)=0.0001m−1 and bbp(max)=0.1 m−1. Both
aCDM and bbp boundaries correspond to 443 nm. We consider the
algorithm to have “failed” if the retrieval yields any of the quantities C,
aCDM, or bbp at either the lower or upper boundaries, i.e., ifC=0.02mgm−3

is retrieved the algorithm failed.
The order of operation begins with selection of a set of starting

values formr andmi within themr,mi grid range defined in Section 2.2.
Starting values for C, aCDM(443) and bbp(443) are also input to a
forward GSM model to determine ρ′w(VIS). Partial derivatives (in mr

and mi) required for the optimization are then calculated for
candidates k(λ,mr,mi), τ(865,mr,mi), ρ′A(VIS,mr,mi), A(VIS,θ,mr,mi) and
B(VIS,θ,mr,mi) determined in Section 3.1 and ρ′w(VIS). Rectangular grid
bivariate interpolation (in mr and mi) is then used to interpolate all
values and partials for the input starting values of mr and mi. For
interpolation in themi direction, we interpolate onmi

1/4 rather thanmi

itself, as ρ′Aw is closer to linearity as a function of mi
1/4. We also

interpolate directly on mr since ρ′Aw is not entirely linear but is
relatively flat in this direction. No interpolation is required for ρ′w as an
analytical formulation (GSM) is used. Once again the equivalence k(λ) /
k(865)=τ(λ) /τ(865) is used to determine τ(VIS) from τ(865), and
τ(VIS), A(VIS,θ) and B(VIS,θ) allow estimation of t⁎(VIS), all in mr, mi.

The derived ρ′Aw(VIS) and all partials are then tested in the
optimization to search for improved candidates C, aCDM(443), bbp(443),
mr and mi given the objective function (11). The process requires
tracking of the status of all parameters at each iteration number j of the
optimization, i.e., the output triggered by the completion of a search at
a particular step. The relative error fjlsq, expressed as a percentage, is
obtained for the minimization function (11) and determined at each
iteration j performed by L-BFGS-B in SOA and for each pixel. The
procedure is stopped when

f jlsq−f
j + 1
lsq

max jf jlsqj; jf j + 1
lsq j;1

n oVstol ð13Þ

where a lower stol (stop tolerance) results in higher precision retrievals.
i.e., a closer match up between ρ′Aw(VIS) and ρAw(VIS). At this point all
retrieved parameters are deemed optimal. Setting stol to 2×10−7 results
in accuracy of 0.1 to 3.0% between ρ′Aw and ρAw at all six visible SeaWiFS
bands. Note that this does not guarantee thatρw is of the same accuracy.
This would require an almost prefect retrieval of ρA and t⁎ at each
wavelength.

To the best of our knowledge, the quasi-Newton class methods do
not guarantee, in general, a convergence to a minimum for the
specified objective function. Therefore, to increase the likelihood of
convergence in Case 2 waters, we run the SOA for six different sets of
starting values of C, aCDM(443) and bbp(443) and select the combina-
tion that gives the highest accuracy (lowest fjlsq) after 15 iterations.
Here, starting C is always low and aCDM(443) and bbp(443) covary
within their full range. Onmost occasions the choice of starting values
actually has no effect on the retrieval. It does however lead to a small
increase in retrieval rate during the rare situation where the
optimization gets ‘stuck’ (and therefore “fails”) at one of the
boundaries given in the inequalities (12). The SOA is then restarted
and iterates until stol is of the order of 2×10−7. In this procedure we
again apply a correction to the aerosol reflectance at each j to handle
the fact that modeled data is center-band while measured data is full-
band. In this instance measured ρA(VIS) is not known a priori (because
ρw(VIS) is not negligible), therefore we apply a center-band to full-
band correction to the modeled value ρ′A(VIS,mr,mi).

As a post-processing step, final values for ν, τ (λ) and ω0(λ) are
determined using both bivariate interpolation (in optimal mr and mi)
and the information at griddedmr andmi determined in the Appendix.
In effect, all seven parameters C, aCDM(443), bbp(443), ν, τ(865), mr

and mi are optimized, and ω0 determined by interpolation, using the
eight spectral bands of SeaWiFS and the constraint that ρ′Aw=ρAw in
the NIR i.e. the whole scheme provides aerosol and ocean parameters
simultaneously.

3.3. Implementation in Case 2 waters

Both Gordon and Wang (1994) and Chomko et al. (2003) assume
that ρAw(NIR)=ρA(NIR) in Case 1 waters. In many Case 2 waters the
actual NIR water leaving reflectance is non-zero as a result of back-
scatter from phytoplankton pigment and detritus (Siegel et al., 2000)
as well as suspended sediments. To account for this we iterate SOA in
the following manner. The algorithm assumes ρ′A(NIR)=ρ′Aw(NIR) to
determine an initial estimate of ν(mr,mi) and τ(NIR,mr,mi). Estimates
of A(NIR,θ,mr,mi) and B(NIR,θ,mr,mi) provide an initial estimate of
t⁎(NIR,mr,mi) from Eq. (5). Subsequent operation of the minimization
in function (11) provides estimates of C, aCDM(443) and bbp(443) from
which an estimate of ρ′w(NIR) is obtained. Ignoring the mr and mi

dependency for brevity, the estimate of t⁎ρ′w(NIR) is then subtracted
from the total reflectance to form the corrected reflectance, i.e.,

ρ Correctedð Þ
Aw NIRð Þ = ρt NIRð Þ−ρr NIRð Þ−tT NIRð Þρ′w NIRð Þ; ð14Þ

and the updated ρAw
(Corrected)(NIR) is used to initiate a new optimization,

i.e., improved estimates of ν(mr,mi) and τ(865,mr,mi) and subsequent
calculation of new water parameters. The procedure iterates until the
magnitude of ρw(865) (or its difference across consecutive Case 2
loops, namely delta ρw(865)) falls below 0.0001. This generally
increases the processing time of the SOA to an order of magnitude
more than the standard algorithm.

4. Model performance

The SOA model presented above is sufficiently complex that it is
nearly impossible to understand how well it might perform in a given
scenario. Thus, to test the SOA performance, we developed an
independent synthetic data set for comparison. Aerosol reflectance ρA
(λ) was generated using two separate models: the coastal Gordon and
Wang (1994) model at 50% relative humidity, C50, and the moderately



Fig. 1. Quantity a⁎ph(λ) for Chesapeake lower bay (summer) and the Middle Atlantic
Bight offshore regions, from Magnuson et al. (2004). Case 1 is also given from
Maritorena et al. (2002).
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absorbing urban model at 90% relative humidity, U90. The C50 model
displays moderate wavelength dependent Angström exponent (0.73–
0.79) andω0 (0.97–0.98). Respective values for the U90model are (1.09–
1.21) and (0.82–0.84). Inbothmodels theaerosol is verticallymixed from
0 to 2 km. It should be noted that these size distributions are the sum of
two log-normal distributions (Gordon and Wang, 1994). Such distribu-
tions are sometimes, but not always well approximated by the Junge
power-law size distribution (for examples, see Chomko and Gordon
(1998), Fig. 3).

Simulated datawere constructed at geometry of θs=30.0°, θv=20.87°,
andϕ=130.0°, and six values of aerosol optical depth at 865 nm, τ(865)=
0.01, 0.03, 0.05, 0.1, 0.2 and 0.4. Values of diffuse transmittance
coefficients A(λ), B(λ) at both θs and θv were also computed from the
same model. Information from the extinction coefficient k(λ), the
proportionality between k(λ) and τ(λ), and the formulation of Eq. (5)
determined corresponding diffuse transmittance t⁎(λ).

Two sets of bio-optical coefficients CBL and MAB were used in the
generation of synthetic ρw. In-situ measurements in the Chesapeake
Fig. 2. Comparison of synthetic ρA(λ) and SOA ρ′A(λ) for CBL (top) and MAB (bottom) at 6
respectively. Each data point represents the mean absolute difference between ρA(λ) and ρ′
and MAB.
Bay area were used to generate CBL and MAB values of the parameter
SCDM of 0.0133 and 0.01646 respectively (Magnuson et al., 2004). The
quantity a⁎ph(λ) obtained in the same study is significantly higher in
MAB than CBL, and both differ appreciably from Maritorena et al.
(2002) Case 1 values at 412 and 443 nm (Fig. 1). The parameter η was
not obtained in the Magnuson study. Instead, backscattering coeffi-
cient measurements have been recorded in the middle bay at the
mouth of the Potomac River (2 samples) and upper bay (9 samples) at
450, 550 and 650 nm (Tzortziou et al., 2006; Gallegos, 2006). Quantity
η was then derived using quadratic interpolation and the expression
for bbp in Eq. (7).

For MABwe elected a similar value of 1.0 as no in situ backscattering
measurements were available in this region.We note that Case 1 GSM η
is also approximately 1.0. The choice of CBL andMAB regions for testing
in this study was based on the fact that a⁎ph(λ) differed appreciably
between regions and the relative magnitudes of the coefficients within
each region are realistic, determined from relatively large in situ data
sets. The possible 0–20% error in MAB η is therefore considered
irrelevant for the purposes of this study. To generate synthetic ρw(λ),
the GSMmodel was operated at 80 different combinations of C (0.1, 0.5,
1.0, 10.0 mgm−3), aCDM(443) (0.003, 0.01, 0.1, 0.5, 1.0 m−1) and bbp(443)
(0.001, 0.003, 0.01, 0.03m−1) at bothCBL andMABbio-optical coefficient
settings (as opposed to the GSM Case 1 settings), for a total of 160
different spectra of ρw(λ).

All GSM water ρw(λ)'s were then combined with each set of aerosol
data produced by C50 and U90 at each of the 6 values of τ(865). This
created a total data set that consists of 80 water combinations at six
aerosol optical depths for two different sets of bio-optical coefficients
and two aerosol models, i.e., 1920 sets of synthetic ρA(λ)+t⁎ρw(λ).

4.1. Aerosol reflectance

The SOA, implemented as described in Section 3, was operated in
Case 2 mode across all 1920 combinations of synthetic ρA(λ)+ t⁎ρw(λ)
described previously. That is, we substitute for ρAw(λ) in function (11)
and, initially, use the same GSM parameters in the retrieval as those
used to generate the synthetic data. All configurations in synthetic and
legend optical depths τ(865). The left and right graphs are for synthetic C50 and U90
A(λ) for 80 different GSM input combinations of C, aCDM(443) and bbp(443) at both CBL
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SOA were the same (e.g., geometry, Rayleigh component etc.) and all
data were band centered.

A high precision aerosol correction is required for robust opera-
tion of ocean color data given the relatively large contribution by
aerosol to the total radiance measured at the satellite sensor. To
determine the quality of the estimated aerosol component, the
absolute error between generated ρA(λ) from both C50 and U90, and
ρ′A(λ) from the SOA, was first determined at each combination of
C, aCDM(443), bbp(443) and τ(865). Fig. 2 illustrates the resulting
mean absolute error for a total of 80 water combinations averaged at
each optical depth for both CBL (top) and MAB (bottom), and both
C50 (left) and U90 (right). Results show that SOA ρ′A(λ) performs
remarkably using C50 in both CBL and MAB for all but τ(865)=0.4 in
CBL. Using U90, the error is increased at higher optical depths in
both regions. This shows that the aerosol error may be significant
(approaching an error N0.001) if the optical depth is high (≥0.2 at
865 nm) and the aerosol is absorbing. Interestingly, the standard
deviation in the mean absolute error in ρ′A(λ) is roughly equal to the
mean absolute error itself. Thus for any particular case, the error in ρ′A
(λ) could likely range from zero to approximately double that shown
in Fig. 2.

4.2. Chlorophyll and CDM performance

In this section we explore the range and performance of the SOA.
We calculate ratios (C-SOA/C-synthetic) and (aCDM(443)-SOA/aCDM
(443)-synthetic) at both CBL and MAB. The ratios are then ordered
from lowest to highest and presented in Fig. 3. The upper-left graph
corresponds to C, upper-right corresponds to aCDM(443). Results in
both top graphs are shown for CBL and MAB at τ(865) of 0.1 (points)
and C50. Also shown are CBL at extreme τ(865) of 0.01 and 0.4 (lines
only) to illustrate the effect of variation in aerosol thickness.
Fig. 3. Ordered ratios of C-SOA and C-synthetic (top-left) and aCDM(443)-SOA and aCDM(443
model C50. The legend shows two conditions of bio-optical region (CBL, MAB) at τ(865)=0.1.
show f(a,bbp) and f(a) for both MAB and CBL, described in the text, at both MAB and CBL gi
For the C match up, SOA is precise for approximately 50 of the 80
combinations in both CBL andMAB at τ(865) of 0.1 using C50. The vast
majority of the 30 poor match ups occur for combinations of aCDM
(443) or C that do not covary positively with bbp(443). A further
comparison of data at the extreme optical depths show a small
increase in SOA precision at low τ(865) and vice versa at high. Note
that more good retrievals are obtained with the MAB than the CBL
parameters. This is likely due to the much larger a⁎ph(λ) for MAB
resulting in a higher sensitivity of ρw(λ) to C.

To try to understand how the retrieval failures occur, the lower left
graph in Fig. 3 is a mapping of f(a,bbp) to CBL C at τ(865)=0.1 given in
the upper left graph where

f a; bbp
� �

=
aCDM 443ð Þ

aph 443ð Þ + aCDM 443ð Þ
� �2

bbp 443ð Þu� �−1 ð15Þ

The numerator in Eq. (15) is the fraction of the total absorption at
443 nm (less water) due to CDM. In the denominator the factor u is a
magnification term for bbp and set to 102 in this analysis. The results in
Fig. 3 indicate a strong relationship between f(a,bbp) (lower left graph)
and C retrieval (upper left graph) with fN1.0 indicating a high chance
of SOA failure. This provides a semi-quantitative indicator of the
chance of SOA success in a given situation. For example, if the water
absorption at 443 nm is 80% dominated by CDM and 20% phytoplank-
ton, then the corresponding bbp(443) needs to be greater than
approximately 0.0064 for good C retrieval. The fact that we need to
square the CDM fraction term in Eq. (15) implies that the spectral shape
of ρw(λ) is slightly more important for SOA operation than its
magnitude as represented by bbp.

For the aCDM(443) match up, the frequency and magnitude of good
retrievals is actually very similar to the C retrievals for each of the
)-synthetic (top right) at 80 combinations of C, aCDM(443) and bbp(443) using aerosol
Also shown are CBL at τ(865)=0.01 and 0.4 using C50. The bottom graphs (left to right)
ven in the upper graphs at τ(865)=0.1.
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given scenarios. However, note that the order of combinations C, aCDM
(443), bbp(443) in the abscissa of the upper left C graph is different
from the upper right aCDM(443) graph. Thus, some of the good CDM
retrievals actually occur for poor C retrievals and vice versa. This is
exemplified by the moderate relationship between function f(a)
(lower right graph) and SOA aCDM(443) retrieval (upper right graph)
given in Fig. 3 where f(a) is now only the numerator in Eq. (15). It
shows that as the proportion of CDM in the water column increases
(relative to phytoplankton), then the precision of SOA for retrieval of
aCDM(443) improves. (Inclusion of the bbp term here actually
weakened the relationship.) This bodes well for using of the SOA for
aCDM(443) estimation, under similar aerosol conditions, in waters
dominated by aCDM(443) irrespective of the magnitude of ρw, as long
as it is not too low compared to ρA (see next section).

4.3. Water reflectance

Fig. 4 illustrates SOA ρ′w(λ) for 16 water parameter combinations
(from 80) for CBL (left) and MAB (right) at synthetic C of 0.1 (top) and
10.0mgm−3 (bottom).Within each graph are eight curves correspond-
ing to synthetic aCDM(443)=0.003 and 1.0 m−1 at bbp(443)=0.001,
0.005, 0.01 and 0.03 m−1. The solid lines are successful SOA retrievals;
dashed lines are SOA failure. Success is defined as an error in the SOA
retrieved Cb30%. Failure occurs when the error is N30% and is referred
to as “C-failure.” The aerosol τ(865)=0.1 using C50 in all data.

The most obvious observation regarding Fig. 4 is the fact that all C-
failures are in waters with low ρ′w(λ) in the visible (i.e., dark waters), a
manifestation of the obvious fact that when the water signal becomes
too low, it cannot be accurately retrieved from ρt(λ). This usually (but
not always) occurs when the water reflectance falls to ~10−3 in the blue
which is near to the expected error in ρ′A(λ). As discussed below, the C-
failures that do not follow this observation, i.e., CBL at low C, result from
the relative insensitivity of thewater reflectance to C because of the low
Fig. 4. SOA ρ′w(λ) for CBL (left col) and MAB (right col) and synthetic C=0.1 and 10.0 mg m
synthetic aCDM(443)=0.003 and 1.0 m−1 (first entry in the legend box) each at bbp(443) of
successful SOA retrievals; dashed lines are SOA failure at 30% tolerance. Aerosol τ(865)=0.1
values of a⁎ph in the blue. In accordancewith the relationship in Eq. (15),
a combination of low bbp and/or relatively high CDM results in failure.
Furthermore, an interesting trend exists with all synthetic bio-optical
combinations in this study: a better C retrieval is obtained when CDM
and bbp once again covary positively. Put simply, as CDM increases then
somust bbp, otherwise thewater becomes too dark. However, this trend
is also dependent on the bio-optical coefficients. For example, at high C,
SOA performance indicates that the covariation restriction between
aCDM(443) and bbp(443) can be relaxed for CBL data, while at low C the
covariation is paramount because C has a much smaller affect on ρw(λ)
than in the MAB. This inversion in the performance (for CBL low C and
high aCDM(443) always results in failure, but not at high C, while in the
MAB the reverse is observed) is a direct result of the relative size of a⁎ph
(λ) in each region. Examination of the error in the retrieved ρw spectra
indicates that most successful retrievals display an error that is nearly
independent of wavelength and less than or approximately equal to 10–
20% across most of the visible spectrum. Some C-failures also have
retrievals of ρw(λ) at similar relative accuracies but fail because of the
insensitivity of ρw(λ) to C.

4.4. Bio-optical model coefficient error

At this point it is important to remember that ρw(λ) is determined
by the total absorption and backscattering coefficients. If atmospheric
correction were perfect, then a(λ) and bb(λ) would be determined
precisely. The bio-optical model does the portioning of absorption
coefficient between that due to C and that due to CDM. Thus, even if
ρw(λ) is error free, error in the bio-optical model coefficients (SCDM, η
and a⁎ph) used in the retrieval will cause error in the retrieved bio-
optical parameters. This is exacerbated in the SOA, because all of the
parameters are retrieved simultaneously, so error in one bio-optical
parameter can influence retrieval of all parameters, including those
relating to the atmosphere.
−3 (top to bottom rows respectively). Each graph presents 8 curves corresponding to
0.001, 0.005, 0.01 and 0.03 m−1 (second entry in the legend box). The solid lines are
using C50 in all data.



Fig. 5. A) Ratio of SOA retrieved C to synthetic C (y-axis) and its sensitivity to GSM bio-optical coefficients (x-axis) in CBL. Each column (l–r) represents sensitivity to SCDM, η and a⁎ph
(412) respectively. Five GSM input combinations of aCDM(443) and bbp(443) are tested (rows t–b), each at four values of input C (legend values). Results are shown for τ(865) of
0.1 and aerosol model C50. B) Ratio of SOA retrieved C to synthetic C (y-axis) and its sensitivity to GSM bio-optical coefficients (x-axis) in CBL. Water configuration is the same as for
Fig. 5A, quantity τ(865)=0.1 and the aerosol model=U90.
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Fig. 5 (continued).
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Fig. 6. (A) Ratio of SOA retrieved aCDM(443) to synthetic aCDM(443) (y-axis) and its sensitivity to GSM bio-optical coefficients (x-axis) in CBL. Each column (l–r) represents sensitivity
to SCDM, η and a⁎ph(412) respectively. Five GSM input combinations of aCDM(443) and bbp(443) are tested (rows t–b), each at four input values of C (legend values). Results are shown
for τ(865) of 0.1 and aerosol model C50. B) Ratio of SOA retrieved aCDM(443) to synthetic aCDM(443) (y-axis) and its sensitivity to GSM bio-optical coefficients (x-axis) in CBL. Water
configuration is the same as for Fig. 6A, quantity τ(865)=0.1 and the aerosol model=U90.
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Fig. 6 (continued).

581C.P. Kuchinke et al. / Remote Sensing of Environment 113 (2009) 571–587



Table 1
Water parameter combinations and their associated index reference values c1 to c8

Spectra # C aCDM(443) bbp(443) f(a,bbp)

c1 0.5 0.003 0.005 0.0552
c2 0.5 0.003 0.01 0.0276
c3 1.0 0.01 0.005 0.1243
c4 1.0 0.01 0.01 0.0622
c5 1.0 0.1 0.01 0.5908
c6 1.0 0.1 0.03 0.1969
c7 10 0.1 0.01 0.0622
c8 10 0.1 0.03 0.0207

Quantity f (a,bbp) is from Eq. (15).

Fig. 7. GSM CBL synthetic ρw spectra for c1 to c8 in Table 1. Spectra numbers c1 and c2,
c3 and c4 etc. are ordered pairs of increasing bbp(443). The high bbp spectra are given in
bold.
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Here we explore the SOA-retrieval's dependence on GSM bio-
optical model coefficient error by systematically varying the bio-
optical coefficients SCDM, η and a⁎ph(412) used in the SOA retrievals
from those used to generate the synthetic data. This is undertaken to
give the user a sense of the error that can be expected using SOAwith
uncertain coefficients. The decision to vary quantity a⁎ph(412) was
motivated by the possibility that its value can confuse the separation
of C and CDM, as aCDM is largest at 412 nm.

4.4.1. Effect of bio-optical coefficient error on SOA chlorophyll retrieval
In this section we introduce GSM model coefficient error into the

SOA retrieval code and compare synthetic and SOA-retrieved C. Fig. 5A
corresponds to CBL using aerosol model C50, and Fig. 5B corresponds
to CBL using aerosol model U90 (to assess performance in the
presence of a moderately absorbing aerosol). The ordinate axis in each
graph corresponds to the ratio of SOA-retrieved C to the (correct)
synthetic C. Five different combinations of aCDM(443) and bbp(443)
were selected for testing and correspond to the five rows (t–b) in
the figures. Respectively, the tested combinations are aCDM(443)=
0.003 and bbp(443)=0.005, aCDM(443)=0.01 and bbp(443)=0.005,
aCDM(443)=0.1 and bbp(443)=0.01, aCDM(443)=0.5 and bbp(443)=
0.03, and aCDM(443)=1.0 and bbp(443)=0.03. All units are per meter.
The selected combinations positively covary as mentioned in Section
4.3. The three columns in Fig. 5A and B represent, from left to right,
graphs whose abscissa is the % variation in the bio-optical coefficients
SCDM, η and a⁎ph(412) respectively in the SOA. The 0% value is the
correct respective model, i.e., the value that was used to create the
synthetic data. Each graph contains four curves corresponding to
synthetic C=0.1, 0.5, 1.0 and 10.0 mg m−3. τ(865) is 0.1 throughout.

The first two rows in Fig. 5A and B correspond roughly to Case 1
waters (aCDM(443)≤0.01 m−1). We see excellent retrieval of C when
there is no bio-optical model error for both C50 and U90. The addition
of bio-optical model error at low aCDM(443) has minor effect except
for SCDM at low C. The low-C case shows some curious effects. The
second row, left panels of both figures shows that error in SCDM can
cause total failure of the algorithm (Note: when C=0.1 mg m−3, the
SOA-synthetic ratio of 0.2 corresponds to a retrieval of 0.02 mg m−3,
which indicates algorithm failure, i.e., the lower boundary on the
retrieved C in Eq. (12)). In addition, error in η can cause unexpected
behavior in the retrieved C (Fig. 5A, second row, center panel). These
effects are due to the interplay between the water and atmospheric
parts of the algorithm, as variations in SCDM and η produce significant
variations is the spectral shape of ρw(λ) for waters in which the
reflectance is large enough to be comparable with ρA(λ) in the blue.
In general, at low aCDM(443) the SOA is least sensitive to the bio-
optical coefficients (except for SCDM at low C) relative to higher values
of aCDM(443), with the extra caveat that bbp(443) must be at least
0.003 m−1.

The centre rowof eachfigure corresponds to highaCDM(443)=0.1m−1.
Results for both C50 and U90 are again very similar, showing failure or
high sensitivity to coefficient error for low-C values and good
performance and low sensitivity to coefficient error for high-C values.
As expected, increasing aCDM(443) to very high values (last two rows
Fig. 5A and B) leads to a progressive deterioration in the retrieval of lower
values of C, where the absorption by CDM overshadows that due to C.

The results in this section illustrate the interplay between bio-
optical model error and the SOA limitations as described in Section 4.2
for water dominated by CDM and/or low bbp. Examples are the
simulations at very high aCDM(443)≥0.5 m−1 given SCDM error (left
column, last two rows of both figures). In each graph the results show,
as one would expect, that any error in SCDM lowers the effective range
of SOA operation in waters where CDM is very high.

An identical set of simulations were carried out for waters for
which the MAB values of a⁎ph(λ) would be appropriate (not shown).
The results are similar to those provided in Fig. 5A and B, but with
important differences. Because lower values of C produce significantly
more absorption in the MAB than in the CBL case, the SOA performs
better at lower values of C in the MAB than in the CBL for each case. As
aCDM(443) increases, the degradation in the quality of the retrieved C
occurs at higher values of aCDM(443) in the MAB than in the CBL.

Summarizing, within the context of the parameter regimes studied
here, where there is a positive correlation between aCDM(443) and bbp, the
simulations show that with a±10% error in SCDM, reasonable retrievals of
C are usually obtained for C≥0.5 mg m−3 and aCDM(443)≤0.1 m−1 in the
CBL, and for C≥0.1 mgm−3 and aCDM(443)≤0.5 m−1 in theMAB. Similarly,
a±10% variation inη does not disrupt good retrievalswhenC≥0.5mgm−3

for most aCDM(443) − bbp combinations.

4.4.2. Effect of bio-optical coefficient error on SOA aCDM(443) retrieval
An important aspect of the SOA is the possibility of the retrieval of

detrital absorption. In Fig. 6A and B, we provide the error in retrieval of
aCDM(443) induced by bio-optical model error in CBL using aerosol
model C50 andU90, respectively. Although absorbing aerosol and CDM
absorption produce similar variations in ρAw in the blue, the effect of
switching from C50 to U90 is virtually non-noticeable at this optical
depth τ(865)=0.1, except at low aCDM(443) (top row). As with the C
retrievals, this trend may differ at very high optical depths given the
larger error in the aerosol retrieval for U90 compared to C50 (Fig. 2).

Specifically, results show that for aCDM(443)≤0.01 m−1, the aCDM
(443) retrieval is highly sensitive to error in a⁎ph(412). Sensitivity to
SCDM, although less, is also significant. This is to be expected as these
coefficients largely determine the relative proportions of aCDM and
aph to the total absorption at blue wavelengths. Hence, at low aCDM
(443), the aCDM(443) retrieval is also poor at very high C. Under these
conditions we are attempting to optimize a very low CDM signal
versus phytoplankton. As we increase aCDM(443) the retrieval rapidly
improves and becomes relatively insensitive to small errors in the
coefficients. For aCDM(443)≥0.1 m−1, the error in the retrieved aCDM
(443) will usually be less than 20% as long as C is not too large.
Although not shown here, aCDM(443) also shows a weak dependence
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on bio-optical region with results slightly improved for CBL due to a
decrease in a⁎ph(λ) compared to that for MAB.

4.4.3. SOA chlorophyll-retrieval sensitivity to τ and bbp
In Section 4.3 we discussed the effect of low bbp on optimization

performance at τ(865) of 0.1. To conclude the discussion of the
influence of bio-optical model error, we now include in the analysis a
more complete investigation of the effect of τ(865) and the
concomitant role of bbp(443). This is undertaken to show how the
interplay between the relative magnitudes of both ρA(λ) (controlled
by τ(865)) and ρw(λ) (controlled by bbp(443)) can affect the SOA
retrievals.

To facilitate this,weoperate SOAwith C50and select four CBL spectra
of syntheticρwat both lowand high bbp(443), a total of eight spectra. For
notation, we label the spectra c1 to c8 and also give the corresponding
values of synthetic C, aCDM(443) and bbp(443) in Table 1, with high bbp
combinations in bold. The associated ρw spectra are given in Fig. 7 with
high bbp spectra again in bold. We operate SOA as before using input t⁎
and ρA(λ) to generate optimal ρ′Aw(λ), and hence ρ′w(λ) at each τ(865).
Also given in Table 1 are the corresponding f(a,bbp) from Eq. (15). We
found earlier (Fig. 3) that f≪1.0 equates to a good C retrieval for τ(865)
of 0.1 (Section 4.2).

In Fig. 8 we show the ratio of SOA-retrieved C to synthetic C for
each of the spectra in Table 1 as a function of SCDM, η and a⁎ph(412)
described earlier. Results for spectra c1 and c2 are contained in Fig. 8A
top and bottom, respectively. Spectra c3 and c4 are in Fig. 8B etc.
Variation in τ(865) is also included in all the graphs. We remind the
reader once again that all results are for CBL.

The results clearly show that for each of the four water parameter
combinations given (Fig. 8A–D), increasing bbp within each figure
(lower row) results in improvement in the C retrieval due to the
increase in magnitude of ρ′w(λ). It also completely removes any
τ(865) bias in less turbidwaters (Fig. 8A and B) and improves the same
bias in high turbidity waters (Fig. 8C and D). This effect is also
noticeable by cross comparing figures. The general trend is an
improvement in accuracy and decrease in optical depth bias for
increasing ρ′w(λ) at blue wavelengths. Interestingly, spectra c5 and c6,
and to some extent c7, give the worst results and show largest optical
depth dependence. These spectra are characterized by an inverted
parabolic spectral shape that is known to the authors to be
problematic, i.e., a positive slope between 412 and 490 nm and flat
response in the green. Accurate decoupling of ρ′A(λ) and ρ′w(λ) is
more difficult for these spectral shapes when the optical depth is
large. A repeat of the entire analysis for MAB waters confirms all
results in this section. However, the move to these offshore waters is
accompanied by a large increase in blue a⁎ph and commensurate
decrease in blue ρw. In the analysis presented above, this is analogous
to decreasing bbp. Therefore, a slightly larger bbp(443) is required for
the same accuracy.

4.4.4. Performance of SOA with SeaWiFS
We conclude the SOA performance investigation with an illustra-

tion of the effect of bio-optical model error using real input data from
SeaWiFS. The purpose is to illustrate the relationship between model
sensitivity and bio-optical error in a working situation. Calibrated
radiance measurements were taken from the SeaWiFS sensor for 26
June 1999 at a pixel centered at 37.50N, 76.08W. This location lies
approximately at the center of CBL. A measured C of 4.99 mg m−3

(±0.87) was obtained from in situ HPLC data at the same location and
within 1 h of the satellite scene. The error range corresponds to the
standard deviation of this and six additional boat measurements
undertaken within 2 h either side of the satellite scan and within a
5 km distance of the given pixel (source: SeaWiFS Bio-optical
Algorithm Mini-Workshop data set (O'Reilly et al., 1998)).

SOA retrieves C, aCDM(443), bbp(443), τ(865) and Junge ν of
5.00 mg m−3, 0.490 m−1, 0.026 m−1, 0.043 and 2.47, respectively. The
SOA uses CBL bio-optical coefficients and the near-perfect match up
between SOA and in situ C was purposely chosen to study the
influence of bio-optical model error.

Fig. 9 shows the resulting trends at the same location for C, aCDM
(443) and ν (see legend) given introduced SOA error in abscissa SCDM,
η, and a⁎ph(412) (3 graphs, t–b). The ordinate axis is the retrieved SOA
ratio of either C, aCDM(443) or ν to its respective SOA value. There is
striking similarity between the C trend in each of the three C curves in
Fig. 9 and the three corresponding curves in Fig. 5A, fourth row (l–r)
for C=10.0 mg m−3. That is, the SOA C sensitivity as a function of bio-
optical error is almost the same when we compared input using
synthetic spectra (at C, aCDM(443), bbp(443), τ(865) of 10.0 mg m−3,
0.5 m−1, 0.03 m−1 and 0.1) and real spectra (at 5.00 mg m−3, 0.490 mg
m−3, 0.026 m−1, 0.043, respectively). The agreement here indicates
that the synthetic analysis in the previous sections is realistic.

In detail, for this station a ±20% error in SCDM results in absolute
error of approximately 30% and 20% for C and aCDM(443) respectively.
The resulting error in ν is 2–4%. A 20% error in η produces a 5%, 9%
and 0.7% error in C, aCDM(443) and ν. Finally, a 20% decrease in a⁎ph
(412) produces respective error of 12%, 4% and 0.4%. Therefore 20%
error in SCDM is most consequential in CBL, and η influences aCDM
(443) more than C. Quantity ν is relatively unaffected by η or a⁎ph
(412).

5. Summary and concluding remarks

In this paper, we have described in detail the implementation of
the SOA algorithm for Case 2 waters. Themainmodification of the SOA
for application to Case 2 waters is an iterative scheme for
accommodating situations with non-negligible water reflectance in
the NIR. Due to the semi-analytic nature of the bio-optical model
(GSM), it is a requirement that the three spectral parameters a⁎ph, S
and η be known a priori if the SOA is to be relied upon for C−aCDM
(443) retrievals. It is expected that values of these parameters will be
site specific and therefore will need to be developed (from in situ
observations) by the user for application of the algorithm to a specific
region.

As mentioned in the introduction, this algorithm will be incorpo-
rated into the SeaDAS software package, as an optional processing
switch of the Multi-Sensor Level-1 to Level-2 code. This will give the
research community the opportunity to utilize and evaluate the
approach for other locations and remote sensors. To provide potential
users with an understanding of the accuracy and limitations of the
algorithm, we generated a synthetic data set to test the performance
of the SOA with both correct and incorrect bio-optical model
coefficients. Using this data set, we developed two functions, f(a,
bbp) and f(a), the values of which allow prediction regarding the
possible success or failure of the retrieval of C and aCDM(443),
respectively: f(a, bbp)≪1 and f(a)~1 for high-quality retrievals. We
then showed that C-failure of the algorithm (error in the retrieved
CN30%) usually occurs when the water reflectance in the blue
becomes ~0.001–0.002 or less, i.e., for “dark waters.” For such waters,
the SOA will simply not provide useful retrievals. Quantities aCDM
(443) and bbp must be correlated in the sense that if aCDM(443) is high
bbp must be high (to prevent “dark water”). In practice, it can be
argued that high CDM is generally associated with high bbp, as it most
often occurs in locations of river outflow and/or sediment resuspen-
sion. However low aCDM(443) does not require low bbp as shown in
the results. C and bbp will in general be correlated because
phytoplankton and their detritus will contribute to bbp; however, if
bbp is too low the water could be too “dark” for algorithm success.
When there is a positive correlation between aCDM(443) and bbp, we
showed that with a±10% error in SCDM reasonable retrievals of C are
usually obtained for C≥0.5 mg m−3 and aCDM(443)≤0.1 m−1 in waters
with CBL bio-optics, and for C≥0.1 mg m−3 and aCDM(443)≤0.5 m−1 in
waters with MAB bio-optics. Similarly, a±10% variation in η does not
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disrupt good retrievals when C≥0.5 mg m−3 for most aCDM(443) − bbp
combinations (showing positive correlations). For aCDM(443)≥0.1 m−1,
the error in the retrieved aCDM(443) will usually be less than 20% as
long as C is not too large.

Simulations of the influence of aerosol optical depth suggest that
some bias may exist at very low bbp(443) N0.005 m−1 and/or under
conditions of high aerosol optical depth (≥0.2 at 865 nm). This is most
severe in waters with ρw(λ) spectra characterized by an inverted
parabolic shape with limited structure at green wavelengths.
Fig. 8. (A) SOA retrieved C versus synthetic C (y-axis) and its sensitivity to GSM bio-optical
synthetic ρw spectra c1 (top) and c2 (bottom) presented earlier in Table 1 and Fig. 6. Results a
and c4. C) Same as (A), but for synthetic ρw spectra c5 and c6. D) Same as (A), but for synth
Application of the SOA to actual SeaWiFS data in the CBL (for which
surface measurements were available) showed that 20% errors in the
bio-optical model parameters still enabled retrieval of C and aCDM
(443) with an error of less than 30% and 20%, respectively.

Given realistic coefficients of the bio-optical model, the main
weakness of the algorithm is the highly simplified aerosol model.
Unfortunately, because of the limited number of spectral bands
available, and the desirability of being able to deal (at least
approximately) with absorbing aerosols, representation of the aerosol
coefficients SCDM, η and a⁎ph(412) (x-axis, l–r respectively). Results correspond to CBL
re shown for all τ(865) used in this study. B) Same as (A), but for synthetic ρw spectra c3
etic ρw spectra c7 and c8.
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size distributionwith a single parameter was a necessity. Realistic size
distributions would require three to four (or more) parameters.
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Appendix. Interpolation of aerosol properties in ν-space

[Estimation of t⁎(NIR,mr,mi)]
We define candidate νtest(mr,mi) between 2.0 and 5.0, τtest(865,mr,mi)

between 0 and 1.2, and a discrete grid forν in increments of 0.5 as in the
aerosol LUTs (Section 2.2). Quadratic interpolation is then used to derive
the extinction coefficient k(NIR,mr,mi,νtest) and the NIR diffuse transmit-
tance coefficients A(NIR,θ,mr,mi,νtest) and B(NIR,θ,mr,mi,νtest) from the
LUT-gridded ν to the candidate νtest. (Note: k is the extinction coefficient
of an arbitrary number of particles. It is used solely to provide the
wavelength dependence of the optical depth for each model.) For this



Fig. 9. Ratio of SOA parameter retrieval with bio-optical error versus SOA parameter
retrieval with no error (y-axis). The three graphs (t–b) correspond to the % error in the
three GSM bio-optical coefficients SCDM, η and a⁎ph(412) respectively (x-axis). Each
graph presents three parameters C, aCDM(443) and ν. Results are for one pixel in the
center of CBL on 26 June 1999 for which SOA and in situ C are matched.
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purpose, we operate the interpolation across three consecutive ν-grid
values that bound candidate νtest. Ifνtest lies outside theν-grid range, we
extend the quadratic shape outside ν-grid, although this rarely occurs.
The estimated τtest(765,mr,mi,νtest) in the same ν space is then
determined from the candidate τtest(865,mr,mi) and interpolated k(NIR,
mr,mi,νtest) using the equivalence k(765)/k(865)=τ(765)/τ(865). (Note
that τtest at 765 nm depends not only on mr and mi, but also on νtest;
hence the addition of νtest to the argument list and its addition to τtest

(NIR,mr,mi,νtest) below aswell, since “NIR” includes 765 nm.) The diffuse
transmittance coefficients along with τtest(NIR,mr,mi,νtest) therefore
allow for direct estimation of t⁎(NIR,mr,mi,νtest,τtest) by Eq. (5).

[Estimation of ρA(NIR,mr,mi)]
An extra step is required for estimation of ρ′A(NIR,mr,mi,νtest,τtest)

in ν space. We first take the four coefficients a–d(NIR,mr,mi,Ggrid,νgrid)
in Eq. (4) and use 2D interpolation in solar/sensor angle and azimuth
angle to arrive at updated quantities a–d(NIR, mr,mi,Greal,νgrid).
The quantities Ggrid and Greal are the LUT and real sensor geometry,
respectively.
Five values of τgrid(NIR) at 0.05, 0.15, 0.30, 0.60 and 0.80 are then
selected. At each τgrid, the geometry-interpolated NIR a–d coefficients
are then used to estimate five intermediate values of ρ′A(NIR,mr,mi,νgrid,
τgrid) which is then interpolated in ν space by quadratic interpolation as
before to give ρ′A(NIR,mr,mi,νtest,τgrid). A fourth order Lagrange poly-
nomial fit is then applied to the set of ρ′A(NIR,mr,mi,νtest,τgrid) values to
give estimated quartic coefficients a–d(NIR,mr,mi,Greal,νtest). Hence we
have effectively interpolated the original NIR a–d coefficients in
geometry and ν space, which along with candidate τtest(865,mr,mi) and
estimate τtest(765,mr,mi,νtest), allow for estimation of ρ′A(NIR,mr,mi,νtest,
τtest) again from Eq. (4).

[Estimation of t⁎(λ,mr,mi), ρA(λ,mr,mi) and ω0(λ,mr,mi)]
We now simplify by removing νtest and τtest from the notation. Once

optimal functions ν(mr,mi) and τ(865,mr,mi) are established (Eq. (10)),
final values of t⁎(λ,mr,mi) and ρ′A(λ,mr,mi) are obtained by repeated
quadratic interpolation in ν(mr,mi) at all wavelengths. The quantityω0(λ,
mr,mi) from the LUTs is also interpolated in ν space. Note that this
procedure uses the same flow as above and therefore computes
intermediate quantities k(λ,mr,mi,νtest), A(λ,θ,mr,mi,νtest), B(λ,θ,mr,mi,
νtest), a–d(λ,mr,mi,Greal,νtest) and τtest(λ,mr,mi,νtest), i.e., we have found
optimal values for all atmospheric parameters at all 12 discrete
combinations ofmr,mi in Section 2.2.
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